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Abstract   

The research aims to obtain informations related to the misconceptions in solving indefinite integrals 

for nonelementary functions using the Taylor series. The critical analysis with focus on the integral 

solution is used to reveal the misconceptions. The research was conducted by analysing integrand 

and/or the part of integrand such that the Taylor series could be applied and meet the requirements 

to integrable, and then integrating the Taylor series. The results revealed that pay no attention to the 

remainder term so that integration of the Taylor series of  f  function is not represent of f  function 

itself, selection of the Taylor series about x = 0 or x ≠ 0 is not suitable to the integrand form, the way 

to obtain the Taylor series by supposition technique, and assumption that the Taylor series 

expansion of f(x) equal to the Taylor series expansion of g(x) divided by the Taylor series expansion 

of h(x) could be applied for all condition are the misconceptions in this research.  

Keywords : Misconceptions, Taylor series, nonelementary functions 

 

I. INTRODUCTION 

The  integral which cannot be expressed using elementary functions in finite form are called 

nonelementary integrals (Kumar, 2012). The researches related to the solution of nonelementary  

integral  have been conducted by several researchers (Conrad, 2005; Kasper, 1980; Marchisotto & 

Zakery, 1994; McMahon, 2015; Rosenlicht, 1972; Williams, 1993; Yadav, 2015). According to the 

researches, the solution could be solved or unsolved dependent on the integral forms. Yadav and 

Sen (2008, 2013) have introduced six standard forms of indefinite nonintegrable functions (classically 

known as nonelementary functions).   

The Taylor series approach in solving indefinite integral is not included in the techniques of 

integration in standard calculus text books and a precise description of Liouville’s proof is beyond the 
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scope of a first year calculus course. According to this problem, researcher found that there are 

several calculus text books couldnot to recognize the forms of nonelementary integral. It makes for 

several lecturers confused to obtain the solution by using the Taylor series to answer the questions 

from their students.   

The lack of information related to the application of the Taylor Series in learing of integration 

techniques has led to the misconceptions. According to experiences of researcher, the 

missconceptions could be seen through this examples, i.e. dxxe x

 ln , 


dx
x

x)1(ln
, 

dx
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sin
,  and   dxx)ln3(cot . The solutions of the integrals was conducted by several 

lecturers are as follows respectively. 
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The solution couldnot be solved by several lecturers. Meanwhile, for another one had a 

solution for the same problem, Let  xu , so  dxdu  . 
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All the  solution  above  was  conducted  by  using  the  Taylor  series  approach. In some  

cases  it  is  not  possible  to  rely on the  Taylor series. If  the  function  is  not  infinitely 

differentiable.  Even  if  a  Taylor  series  can  be  generated,  there  is  good   possibility  that  it  will 

diverge and not represent the function one is attemping to antidifferentiate 

(“http://en.m.wikipedia.org/wiki/Nonelementary_integral,” 2016).  

 

A preliminary study of the solutions could be started by learning the Taylor series therom. Let  

f   be  a function  with  derivatives of all orders  in some  interval (a – r, a + r). the Taylor series  
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This case arises frequently enough that is given the special name Maclaurin series (Stewart, 2009). 

 

The Taylor series of f function represents f function itself for ,0)(lim 


x
n

R
n

 hence  

dx
axafaxaf

afdxxf 



















 ...

!2

2)()(''

!1

)()('
)()( , So  that  dxxf )(  can 

http://en.m.wikipedia.org/wiki/Nonelementary_integral,


  

100 

 

be  solved  by using the Taylor series, and vice versa. Probably, all the solution of several lecturers 

still containing the remainder term, therefore, the solutions needs to be investigated.    

 

II. METHOD 

The critical analysis is used to reveal the misconceptions of integral solution based on the 

examples that have been explained in background of study previously, i.e. 

,ln dxxe x
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 and   dxx)ln3(cot . Operationally, the steps 

are as follows:   

1. Collecting and learning concepts related to the Taylor series and nonelementary functions. 

2. Analysing of the integrand form and/or the part of integrand such that the Taylor series can be 

applied and meet the requirements to integrable. 

3. Integrating the Taylor series as the final solution of indefinite integral for nonelementary 

functions. 

 

III. RESULTS AND DISCUSSIONS 

The critical analysis for the solution of dxxe x

 ln  related to the attention of remainder term 

in the Maclaurin series of 
xe . A reason why several lecturers does not consider the remainder term 
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xe convergent for all x. In education world, in terms of solving mathematics 

problems, all the requirement must be written clearly, therefore, the reason above is wrong, even if 

the final solution is correct. As for the correct solution, must be showed that 0)(
0

lim 


x
n

R
n

 

or 0)(
0

lim 


x
n

R
n

as follows: 

1)0()(  gexg x
 

1)0(')('  gexg x
        

 

1)0()( 11   nxn gexg      

)(...
!3!2

1
32

xR
xx

x n . 

1

)!1(

)(
)1(

)(







n

x
n

c
n

g
x

n
R  



  

101 

 

xnx
nnn

x
n

R
n

.
!)1(

1
lim)(lim





 

x
n

nx

nn !1

1
lim


, 

where 
!n

nx
 is the nth term of a convergent series 

!n

x n

, so that .0
!

lim 
 n

nx

n
 Then 

0.0.0)(lim 


xx
n

R
n

, since x  exist. So 0)(lim 


x
n

R
n

. Hence, the Maclaurin 

series of 
xe  integrable and  dxxxe ln  is solved as follows: 

....
184

lnln...
!3

2

!2
1

1
lnln

32









  













 C

xx
xxxedx

xx

x
xxedxxxe x

 

The solution of 
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 also has a similar problem. The selection of the Maclaurin 

series to solve the integral was properly. But, there exist a misconception too, that is, pay no 
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unsolved using the Taylor series. 

 

The critical analysis for the first solution of dx
x
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 revealed about the inability to choose 

the Taylor series that must be used, so that, the integral unsolved due to the Taylor series about x = 

0 still containing the integral form. As for the second solution, the critical analysis revealed a 

misconception related to the technique of supposition to determine the Taylor series of  f  function. 

The mistake related to the derivative of f  function. Obviously, the derivative of a function before 

supposition is not equal to the derivative after supposition, therefore, the Maclaurin series expansion 

of f(x) based on the Taylor series also a misconception, since the supposition of  xu , where 
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The critical analysis for the solution of   dxx)ln3(cot  are as follows: 

1. Changing the integrand form through supposition and the Maclaurin series expansion of 

,cosu usin , and 
ue

are the same mistake to the second solution of dx
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previously. 

2. Assumption that the Taylor series expansion of ucot  equal to the Taylor series expansion 

of ucos divided by the Taylor series expansion of usin is a misconception. The Maclaurin 

series expansion of ucot  does not exist. While the Maclaurin series expansion of 
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are as follows: 
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The form of )()1( cf n 
 very difficult to be determined and 0)(lim 


xR

n n or 

0)(lim 


xR
n n  very difficult to prove, therefore, to obtain solution of   dxx)ln3(cot  is 

very difficult too. 

 

IV. CONCLUSION 

The results revealed that there are several misconceptions in solving indefinite integral for 

nonelementary functions in this research, i.e.  
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1. Pay no attention to the remainder term of the Taylor series so that integration of the Taylor 

series of  f  function does not represent of  f  function itself, where  f  divergent of an interval 

( 0)(lim 


x
n

R
n

).                

2. The selection of the Taylor series about x = 0 or x ≠ 0 is not suitable to the integrand form or 

the part of integrand, so that, the integral very difficult to be solved or even unsolved.  

3. The way to obtain the Taylor series about x = a  by supposition technique.  

4. Assumption that the Taylor series expansion of f(x) equal to the Taylor series expansion of 

g(x) divided by the Taylor series expansion of h(x) could be applied for all condition.  
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